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Order-parameter flow in the SK spin glass I: 
replica symmetry 

A C C Coolen and D Sherrington 
Department of Physics-Theoretical Physics, University of Oxford. I Keble Road, Oxford 
0x1 3NP. UK 

Received 28 June 1994 

AbslracL We present a theory to describe the dynamics of the Sherringtan-Kirkpatrick 
spin-glass with (sequential) Glauber dynamics in terms of deterministic flow equations for 
macroscopic pxameters. Two transpmnt assumptions allow us to close the macroscopic laws. 
Replica lheory enters as a tool in the calculation of the time-dependent local held distribution. 
The theory produces. in a natural way, dynamical generalizations of the AT- and rem-entropy 
lines and of Parisi's order-parameter function P ( q ) .  In equilibrium we recover the standard 
results from equilibrium statistical mechanics. In this paper we make the replica-symmetric 
ansarz, as a first step towards calculating rhe order-parameter Row. Numerical simulations 
suppoa our assumptions and suggest thal our equations describe the shape of the local field 
distribution and the macroscopic dynamics reasonably well in the regjon where replica symmevy 
is stable. 

1. Introduction 

The Sherrington-Kirkpatrick (SK) spin-glass model [ l ]  describes a collection of N Ising 
spins, coupled by exchange interactions which are drawn at random from B Gaussian 
distribution. These interactions represent quenched (frozen) disorder. The equilibrium 
statistical-mechanical description of the SK model seems to have reached a stable fixed- 
point, built on replica theory with, at least in the spin-glass phase, broken replica symmetry 
b In Parisi [2].  A clear and extensive description of the formalism developed since 1975 
and most of the relevant references can be found in textbooks like the ones by Mezard et 
al [3] and Fisher and Hertz [4]. 

With respect to the dynamical properties of the SK model, the situation seems different. 
The early dynamical studies, like [5-71, were more or less of a pilot character, employing 
mean-field approximations (MFA) and linearizations of the exact dynamic ensemble averages. 
Analytical work beyond MFA published so far has mostly concentrated on Langevin dynamics 
for soft spins, as opposed to Ising spins 18-1 I]. In the Langevin case the standard procedure 
(described in detail in, for example, [12.4]) is to construct a generating functional from a 
path-integral representation of the microscopic state probability, which can subsequently be 
averaged over the quenched disorder (i.e. the random exchange interactions). This leads to 
a saddle-point problem, the limit N + 00 can be taken and one obtains a complicated set 
of equations for correlation and response functions. These can be interpreted in terms of a 
Langevin equation for a single spin with a retarded self-interaction and a noise term with 
non-trivial moments. In order to proceed from this stage, additional assumptions, restrictions 
or approximations are needed, like expansions near critical lines or near equilibrium. By 
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construction, in these theories only time-scales which do not diverge with N are described. 
The approach followed by Sompolinsky in [XI is different: here a hierarchy of timescales 
is introduced, all of which diverge for N + 00, but in a strict order. The case of Glauber 
[I31 dynamics for king spins was studied by Sommers [14], who developed a path-integral 
formalism by performing manipulations on the solution (in the form of a time-ordered 
product) of the master equation. His method, although subsequently applied by other 
authors to related models like the non-symmetric SK model [15], was later criticized by 
Lusakowski [16]. As far as we are aware, the issue of the correctness (or otherwise) of the 
Sommers approach has not been settled. 

At zero temperature the SK model shows strong remanence effects (see, for example, 
Kinzel [17]), with a non-exponential decay of the magnetization. Only recently has 
numerical evidence been published [ 181 which suggests that infinite-range models such 
as the SK model even exhibit ageing effects of the type observed in experiments on real 
spin-glasses [4,19], which until now were always assumed to be typical for finite-range 
models and therefore explained using scaling arguments for growing domains. 

Motivated by the non-trivial dynamical phenomena exhibited by the SK model and 
by the restricted theoretical understanding of the Glauber dynamics (as opposed to the 
continuous Langevin approach), in this paper we develop a theory to describe the Glauber 
dynamics of the SK model in terms of deterministic flow equations for two macroscopic state 
variables: the magnetization m 3nd the spin-glass contribution r to the energy. Our reasons 
for choosing these two quantities as dynamic-order parameters, in favour of a dynamical 
equivalent of the spin-glass order parameter q or its distribution P ( q ) ,  are the following. 

(i) On finite time-scales both m and r evolve deterministically in time in the limit N + 03. 

(ii) The Hamiltonian of the SK model can be expressed solely in terms of m and r .  
(iii) In thermal equilibrium m and r are self-averaging with respect to the quenched disorder 

(iv) Both m and r are instantaneous functions of time for a single system, whereas P ( q )  
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in  the limit N + CO (since m and the free energy are [ZO]). 

involves correlations between different times or systems. 

The key to closing the deterministic laws is to calculate the distribution of time-dependent 
local alignment fields. Two transparent physical assumptions allow us to calculate this 
distribution analytically and find a closed set of flow equations for our two order parameters, 
The theory produces in a natural way dynamical generalizations of the AT- and zero-entropy 
lines and of Parisi's order-parameter function P(q) .  In equilibrium we recover the standard 
results from equilibrium statistical mechanics. The present formalism has previously been 
applied successfully to a related model: the Hopfield neural network model near saturation 
[211. 

In our view, the main appeal of our formalism is its transparency. The theory is 
formulated in terms of two directly observable macroscopic state variables and, apart from 
two simple assumptions, is derived directly from the microscopic stochastic equations. 
Secondly, an interesting difference with existing approaches is the way in which replica 
theory enters. In the standard Langevin approach (after having taken the limit N --f w) one 
ends up with quantities and equations very much like the ones encountered in equilibrium 
replica theory, with replica indices replaced by time arguments. In Sompolinsky's theory 
replica indices are replaced by labels of the hierarchy of time-scales. In contrast, in the 
present formalism replica theory enters as a mathematical tool in calculating the time- 
dependent distribution of local alignment fields. The only uncertainty in the status of the 
theory originates from the two closure assumptions, since all subsequent calculations can, 
in principle, be performed exactly. Both are supported to a certain extent by evidence from 
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numerical simulations. A recent study of an exactly solvable toy model [22], stimulated by 
the work reported here and in [ZI]. suggests that the proposed closure procedure succeeds 
in capturing the main physics in a closed set of transparent deterministic equations and 
is exact for t = 0 and t = 00, but does not reproduce all temporal characteristics for 
intermediate times. Since the closure procedure is based on the elimination of microscopic 
memory effects, the theory can contribute to a better understanding of the relation between 
the microscopic processes and correlations and the macroscopic measures of complexity, 
such as the order parameter P ( q ) .  

In this paper we develop the general formalism. However, in calculating the order- 
parameter flow explicitly we will make the replica-symmetric RS ansatz. We will show that 
in most of the flow diagram replica symmetry is stable. In the region where the RS solution 
is unstable the flow direction is still described correctly and the RS theory even predicts 
non-exponential relaxation for T + 0, but the RS equations fail to describe a rigorous 
slowing down which, according to simulations, sets in near the de Almeida-Thouless [23] 
line. In a subsequent paper we shall address the implications of replica-symmetry breaking. 

2. Dynamics of the Sherrington-Kirkpatrick spin-glass 

2.1. Dejinitions and macroscopic laws 

The Sherrington-Kirkpatrick (SK) spin-glass model [ I ]  describes N Ising spins ui E {-I .  I ]  
with infinite-range exchange interactions Ji,: 

where the quantities zij,  which represent quenched disorder, are drawn independently at 
random from a Gaussian distribution with ( z , j )  = 0 and (2;) = I .  

The evolution in time of the microscopic state probability p i ( u )  is of the Glauber [I31 
form, described by a continuous-time master equation. 

in which Fk is a spin-flip operator Fk@(u) 
rates wk(u)  are 

@(U,, . , . , -uk,. . . , U N )  and the transition 

I wk(u)  = 3 [1  - uk tanh[ght(u)ll h , (u )  = J t p j  + 0 
j # i  

which leads to the required standard equilibrium distribution 

H ( u )  = - c u i J i j u j  - c 0 i u ,  
i<i 

p q ( u )  - 
(for numerical simulations we resort to a discrete-time sequential process, where the w ~ ( u )  
are interpreted as transition probabilities with iteration steps of duration 1 / N .  For N + 00 

this must reproduce the physics of the continuous-time equation [24]). The energy per spin 
can be written in terms of two macroscopic quantities 



7690 

These two observables, the magnetization and the energy contribution induced by the 
quenched variables {z ; , j ] ,  will be used to define a macroscopic state. The corresponding 
macroscopic probability distribution is 
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Ft(m,r )  ~ C p 1 ( 4 ) 6 [ m - m ( u ) ~ ~ [ r - r ( u ) l .  (5) 
U 

By inserting the microscopic equation (2) and after defining the ‘discrete derivatives’ 
A ; f ( a )  f ( 4 u )  - f(u), we obtain 

with the sub-shell average 

The local alignment fields and the ‘discrete derivatives’ are given by 

With these expressions and the transition rates (2) we can evaluate (6): 

In the limit N -+ 00 (7)  acquires the Liouville form and describes deterministic flow at the 
macroscopic level (m,  r ) .  The evolution of the dynamic-order parameters (m,  r )  is governed 
by the flow equations 

(81 
d 
-m = j’dz Dm.,:,[zl tanhp (Jom + Jz + 0) - m df 

(9) 
d 
- r  = j’dz D m , , ~ r l ~ l ~  tanhp (Jom + J z  + e )  - 2 r .  
d t  

All complicated t e r m  are concentrated in the distribution of spin-glass contributions z i ( c )  
to the local fields 

Thus far no approximations have been used; equations (8) and (9) are exact for N 3 00. 
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2.2. Closure of the macroscopic laws 

The flow equations are not yet closed: they contain the distribution D,,,:,[z] (IO), which 
is defined in terms of the solution p,(o) of the microscopic equation (2). In order to close 
the set (8) and (9) we make two simple assumptions on the asymptotic ( N  + 00) form of 
the local field distribution D,n.,;r[z]. 

(i) The deterministic laws describing the evolution in time of the order parameters (m. r )  
are selfaveraging with respect to the distribution of the quenched contributions z i j  to the 
exchange interactions. Therefore the local field distribution D,,,;, [ z ]  is self-averaging 
as well. 

(ii) In view of (i) we assume that, as far as the calculation of D,,,;t[zl is concerned, we 
may assume equipartitioning of probability in the macroscopic (m, r )  subshells of the 
ensemble. 

Assumption (i) allows us to simplify the problem by performing an average over the 
(quenched) random variables ( z i j ] .  As a consequence of assumption (ii) the explicit time- 
dependence in the flow equations (8) and (9), and the dependence on microscopic initial 
conditions are removed, since the distribution D,.,;r[z] will be replaced by 

For sequential dynamics, the first of our two assumptions is clearly supported by 
experimental evidence (sequential simulations at T = 0.1). which we present in figure 1 (for 
JO = 0, where the system evolves towards a true spin-glass state), figure 2 (for JO = I ,  which 
marks the onset of a non-zero equilibrium magnetization) and figure 3 (for JO = 2, where 
the system evolves towards a ferromagnetic state). Each of the flow graphs corresponds 
to one particular realization of the quenched disorder ( z , , ] .  The initial states generating 
the different trajectories (labelled by = 0, . . . , 10) were drawn at random according to 
po(u) ni [~ [ l+~e]s , , ,+~ [ I -~e ]s , , , - , ] , such tha t  that (m),,o =O. l l and  (r)(=o = 0. 
With increasing system size, fluctuations in  individual trajectories eventually vanish and well 
defined flow lines emerge, which no longer depend on the disorder realization. The second 
closure assumption can only be tested in such a direct manner by comparing the actual local 
field distribution, measured during simulations, with the result of evaluating (1 1). This will 
be done in a subsequent section. 

In equilibrium studies the above two assumptions are, in fact, the basic building blocks 
of analysis as well, where (i) is assumed and (ii) is a consequence of the Boltzmann form of 
the microscopic equilibrium distribution. Our aim is to calculate analytically the N + 00 

flow illustrated in figures 1-3, by combining (8) and (9) with (11). The distribution (11) 
will be calculated using the replica method. 

2.3. The local field distribution 

We use the following replica expression for writing expectation values of a given state 
variable @ over a given measure W :  
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Figure 1. Trajectories in the ( m , r )  plane obiained by performing sequential simulations of the 
SK model with T = 0.1. J = I and Jo = 0, for r < 10 iterationstspin. 
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Figure 2. Tmjectories in the (m,r) plane obtatned by performing sequential simulations of the 
SK model with T = 0.1, I = I and Jo = I ,  for I < IO iterationslspin, 
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Figure 3. Trajectories in the (m. r )  plane obtmed by pelforming sequential simularions of the 
SK mcdel with T = 0.1, J = I and 4, = 2. for r < IO iterationslspin. 

which allows us to write (1 1) in the replica form. By writing the delta-functions in integral 
representation we obtain 

with 

(u/fi)xa,, w$-(i/fi)Lim G,,z tro;$ 
,+,{ua} =(e- )I&, I . 

We now perform the average over the quenched variables [z i j )  in M ( u ' ) ,  with the result 

~ ( ~ 0 )  = e-xz/2-(N/4)& i a 9 $ ( u ) ? 8 + + 1 ~  ?. ] ' -xz  ?m9du)$'+O(l/N1 

in which we have introduced the familiar order parameters qnp(u) 
we again introduce appropriate delta-functions, 

(1/N) xi u ~ u ~ .  If 

we can reduce the spin-averages to single-site ones. The result can than be written in terms 
of an n-replicated king spin ( U , ,  , . . , U"): 



in which the order parameters (ft, ?, 6,q) are found by selecting the saddle point of Q (1 z), 
which gives a minimum with respect to variation of the order parmeters q,, Variation of 

The 
remaining conjugate parameters, uniquely determined by the saddle-point requirement. turn 
out to be purely imaginary: FE, = ip, and A, ip., with which we obtain the following 
saddle-point equations: 

4ap allows us to already eliminate one set of conjugate parameters: &p = -iiqnpPaPp. B: 

The exponent ly can be simplified to 
4 E"'9"A 

and the distribution Dm,[z] becomes 
(,-irC,n"PyqlltCC*u~+( & Y ~ . ~ P , P ~ + ~ A  

Dm,,[z]  = / " 4 0  lim P,.,tf E"a4raP"PA~"m (18) L 
The physical meaning of the order parameters q+ which in the present theory are 

functions of the two macroscopic state variables m and r ,  can be inferred in the usual 
manner by considering two spin systems, U and c', with the same microscopic realizations 
of the quenched disorder. For such systems we define the disorder-averaged probability 
distribution P,,(q) for the mutual overlap between microscopic configurations if both 
systems are constrained on the same macroscopic ( m ,  r )  subshell: 

I 
= lim Uq - qepl 

Q f P  n-o n(n - 1) 
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This dynamical equivalent of Parisi's [ Z ]  equilibrium order-parameter function will, in the 
present theory, depend on time through the values of the two macroscopic parameters (m. r ) .  

The saddle-point exponent Y that is extremited in the replica calculation of the local 
field distribution has an entropic physical interpretation. We define the entropy per spin 
for the instantaneous macroscopic state (m.  r )  as 

Using the replica trick log Z = lim,,-,~(l/n) [Z' - I ]  and averaging over the quenched 
disorder allows us to express 3 in terms of the saddle-point problem encountered in 
calculating Dm,lzl: 

1 
n-ro n = log2+ lim -Y (21) 

in which Y is the saddle-point exponent (17). The entropy saga in  depends on time through 
the values of the macroscopic state variables (m,  r ) .  

2.4. Equilibrium 

For large times the microscopic probability distribution p , ( a )  converges to the static 
Boltzmann expression Z-'e-BKcu) (with the partition function Z = Cae-flK(u)), Since 
H ( a )  (4) can be written in terms of the macroscopic state variables m ( a )  and r ( a ) ,  at 
equilibrium we automatically obtain equipartitioning of probability in the (m,  r )  sub-shells 
of the ensemble (equipartitioning in the energy shells is an even stronger statement). This 
removes the need for the second of our closure assumptions, leaving only the need for our 
assumption that the evolution of m and r be self-averaging. We will now demonstrate that 
in equilibrium we do recover the full standard results from equilibrium statistical mechanics, 
including the replica-symmetry breaking (RSB) equations. 

The standard replica formalism as applied to the SK model (see, for example, [3,4]) leads 
in the thermodynamic limit N -+ 00 to the following expressions for the disorder-averaged 
free energy per spin 3 
- 1  
f = - - I  og 2 + lim min F(m. q) a n - 4  
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According to Parisi's [2] theory the magnetization is self-averaging, even in the regime 
where replica symmetry is broken 1201, so P(m) is a delta-function and mm = m for all 
a. From the internal energy in thermal equilibrium E J N  = [ 1 + pap]T, which is also self- 
averaging [ZO], we obtain the equilibrium expression for our dynamic-order parameter r :  

req = + B J  [ I  - j d q  p ( q ~ ]  . 

For p J 0  < 1, where meq = 0, the continuous transition at p J  = I from the paramagnetic 
phase with P (4) = 8(q) to the spin-glass phase, is therefore marked by rq = 4. 

Comparison with the dynamical equations (14)-(16), shows that the two approaches 
yield identical equations if we impose the following conditions: 

pe = p ,3( Jom + 6) po = p ,3 J . (27) 
Below we show that these conditions turn out to be precisely those which imply dynamical 
stability with respect to the macroscopic flow (8) and (9): 

d 
%r = O  d 

-m = 0 
dt 

and hence they also describe the same equilibrium physics. 
First we consider the evolution of m, using the noise distribution (18) and the conditions 

(27). If we perform a shift of the integration line for i and perform the integral over x we 
arrive at 

with the abbreviation Dz = @$)-'I* 
perform the average over LTI exdicitly, and use the identity 

dz. In the numerator of this expression we 

e-" j D z  tanh [pz - pz + U ]  +eu D: tanh [pz + p2 + U] = 2sinh[u] J (28) 

to arrive at 

d e"z"%+pz"'q"*vs )U -m = -m + lim 
dt 

= O  
4-0 ( e ~  L3" ++tp' E v i q ~ i ~ v ~ , ) u  

(utilizing (14)). 
In a similar way we obtain for the evolution of r 

d 
- r  = -2r + lim dt "-0 
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Again we perform the average over UI in the numerator explicitly and simplify the result 
with the identity 

e-' /Dz [ p z  - p2 + U] tanh [ p z  - p 2  + U ]  + eu /Dz  [ p z  + pZ +U] tanh [pz + p2  + U] 

= 2usinh[u] + 2p2cosh[u] 
and arrive at 

(utilizing (15) and (16)). 
Finally we use the equilibrium conditions (27) to show that the thermodynamic entropy 

per spin S = p2a,J in equilibrium coincides with the dynamic entropy per spin s given 
by (20): 

According to (17) and (21) this expression is identical to the one we obtained for s. 
3. Replica symmetry 

3.1. Replica-s).mmetric Iocalfield distribution 

We first make the replica-symmetric ansatz (RS) and assume Pm,(9)  (19) to be a delta- 
function, so qup = &, + 9(  1 - aafl). From this ansatz the saddle-point equations (14)-( 16) 
allow us to deduce pa = p and pa = p .  For n + 0 we obtain 

m = /Du tanh(pfiu + P I  (30) 

9 = Du tanh2(pfiu + w )  (31) 

(32) 
2r 

s 
p = -  

l - q l '  
The corresponding local field distribution Dis[z] becomes 

D::[z] = s z;;e-xz/2tuz lim Du cosh[pfiu + p - ixplcosh"'[pfiu t I.L - i x q p ]  . 

We first perform the shift U + U + ix@, after which the limit n + 0 can be safely 
taken. In the resulting expression we can perform the integral over x. After some final 
transformations of integration variables we ariive at 

s dx 
"-0 

(33) 
This expression cannot be simplified further, except for three special cases which we will 
discuss below. 
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From expression (33) and the saddle-point equations it is clear that D ~ z ]  is Gaussian 
only along the line r = 0: 

(34) 

For r = 0 we  obtain q = m2. We can identify such macroscopic states as purely 
ferromagnetic (for m # 0) or paramagnetic (for m = 0). The result (34) is indeed what one 
would obtain in thermal equilibrium for ,5J = 0 (where only the paramagnetic and purely 
ferromagnetic states are found). 

A second simplification of (33) results for q = 0 (the paramagnetic state), which can 
only occur along the line m = 0. For m = 0 the RS saddle-point equations reduce to 

RS 1 -?/2, r = 0 :  D,,,[zI = -e 6 

with the properties 
F(1) = 1 F ( q )  = 4r'q - 32r4q2 + U(q3) 

from which we conclude that along the m = 0 line we find a paramagnetic (q = 0) state 
for r c f :  

This result is indeed what one would obtain for the field distribution in thermal equilibrium 
in the paramagnetic region of the phase diagram [25]. For r > i ,  m = 0 we obtain a 
spin-glass with q # 0, where again we know from equilibrium studies [25] that the local 
field distribution indeed has a non-trivial form like that in (33). 

The third simplification occurs for q sz I ,  Expanding the saddle-point equations in 
powers of E = 1 - q gives the leading orders 

Equation (37) defines the line in the (m,r) plane where the situation q = 1 actually 
occurs. Near this line we can use the scaling relations (36) to show that (33) reduces to the 
Schowalter-Klein [26] form, which in equilibrium would be obtained in the limit of zero 
temperature [25] (in RS approximation): 

in which r(m) denotes the q = 1 line (37) 

3.2. Special lines in thej4ow diagram 

In order to check the applicability of the RS ansatz we calculate the equivalent of the 
RS zero-entropy ('freezing') line in the (m. r )  plane (where the number of microscopic 
configurations contributing to our averages vanishes), and the de Almeida-Thouless (AT) 
line [23], where a replica-symmetry breaking (RSB) solution of the saddle-point equations 
bifurcates from the RS saddle point. 
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In RS theory the dynamic entropy (20) is, according to @ I ) ,  given by 

5,s = log2 + Du logcosh[puJij  + /L] - mji + ap2(1  - q)* - p r  . (39) s 
For r = 0 (where there is no spin-glass alignment) the entropy reduces to 

SRS.,=O = log 2 - ds s [ 1 - tanh2(s)] E [O, log 21 

with .&=o = log2 at m = 0 (the paramagnetic state) down to .?=,,=O = 0 at m = f l  (the 
fully ordered ferromagnetic state). Along the line m = 0, below r = f ,  we find q = 0 and 
3,s = log2 - r z  > 0. Using the scaling relations (36) one can finally show that near the 
q = 1 line (37) the RS entropy is negative, except for Iml = 1, r = 0, where the q = 1 line 
and the line &, = 0 meet. Since the physical dynamical entropy cannot be negative this 
already signals an inadequacy in the RS ansatz, analogous to that found in the equilibrium 
RS theory of SK [I]. The full curve 3, = 0 signals this inadequacy in (m. r )  space. 

An AT-he [23] signals the first continuous bifurcation of a saddle-point solution without 
replica symmetry from the replica-symmetric one. We follow the usual convention and 
assume that the first such bifurcation is the replicon mode 

!& = w 
Inserting this ansatz into the full saddle-point equations shows that the RSB bifurcations are 
of the form 6q,B = 0. After some bookkeeping and after taking the limit n + 0 one 
then obtains the bifurcation condition which defines the dynamic AT line 

4 4  -+ 9 i- %P Pa = P 

1 - p2 Du c o ~ h - ~ [ p J i j u  + 1 1  = 0 .  (40) s 
The RS solution is stable as long as the left-hand side of (40) is positive. For r = 0 (with 
jml < 1) the RS solution is indeed stable. The AT line intersects the line m = 0 at r = $. 
Using the scaling relations (36) one can also show that near the q = 1 line (37) the RS 
solution is unstable, except for jml = 1, r = 0, where the q = 1 line and the AT line meet. 

In figure 4 we show the freezing line (where 3,s = 0) (39). the AT line (40) and the 
q = 1 line (37) in the ( m ,  r )  plane, together with the numerical and analytical flow data. 
We note that the q = I line always lies above the &S = 0 line, which in turn lies above the 
AT line. except at Iml = 1, r = 0. Thus the AT line is the critical one for replica symmetry. 
The separation between the AT line and the q = 1 line, which provides an effective boundary 
for the (m. r )  dynamics. is greatest for small m where the ferromagnetic order is small and 
occurs for large r ,  when spin-glass alignment is greatest. 

Below the AT line the RS solution i s  stable against RSB fluctuations. The RS solution 
breaks down in the region where feromagnetic order is small and spin-glass-type field- 
alignment dominates. 

3.3. Replica-symmetric flow equations 

By combining (8) and (9) with expression (33) we arrive at a closed set of autonomous 
differential equations describing the deterministic evolution of the macroscopic state (m. r):  

(41) 

(42) 

d 
-m = j j D x  Dy M ( m ,  r ;  x ,  y) - m 
d t  
d 
-r = //Dx Dy R(m,  r ;  x. y) - 2r 
dt 
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in which 

M(m, r ;  x .  y )  = '[I 2 - tanh [ x p J G +  pqy + f i ] ]  

A C C Coolen and D Sherrington 

x t a n h B [ J o m + J y + B - J p ( l - q ) l  
+$[I + t a n h [ x p ~ + p q y + ~ ] ] t a n h B [ J o m + J y + 8 + J p ( l - q ) ]  

x tanhB[Jom + J y  + 0 - J p ( l  - 411 
++[Y + ~ ( 1  - q)1[ 1 + tanh [XP- + 
x tanh j?[Jom + J y  + B + J p ( l  - q)1 

R ( m . r ; x . y ) =  +[Y - P O  -q)l[l - b h [ x p m + p q y + ~ ] ]  

+ P]] 

with { q ,  p ,  P ]  being functions of the macroscopic state (m ,  r ) ,  to be solved from the saddle- 
point equations (30)-(32). 

In figure 4 we compare the flow defined by (41) and (42) with numerical simulations 
for N = 3000, 8 = 0, J = 1, JO E (0, 1,2] and four choices of the temperature T. The 
parameters JO and T have been chosen in such a way that the corresponding equilibrium 
situations (according to standard equilibrium theory 141) include spin-glass states (Jo e 1, 
T < I ) ,  states with ferromagnetic order (Jo > 1, T < Jo) and paramagnetic states (Jo c T, 
T > I). At intervals of Ar = 1 iteratiodspin we measure the macroscopic-order parameters 
(m, r) in the simulated system and calculate the derivatives ((d/dt)m, (d/dt)r) as predicted 
by (41) and (42). The initial states generating the trajectories (labelled by e = 0,. . , , IO) 
were drawn at random according to p o ( s )  = fli [+[ I  + &t]6,9J,r: + $[l - &t]8,yj , -c;] ,  such 
that that (m)t,o = 0.lt and (r),- = 1. The figure indicates that the flow is described quite 
well by (41) and (42) except for those regions in the (m. r )  plane where the RS solution 
is unstable (above the AT line). More detailed comparisons between theory and simulations 
will be made in a subsequent section. 

From the RS saddle-point equations (30)-(32) we can directly recover all equilibrium 
results obtained by Sherrington and Kirkpatrick [1,7]. Inserting the two relations p = B J  
and p = B(Jom + 0) into our RS saddle-point equations gives 

m = /Du tanhp(J0m + J&u + 0) 

q = / D u  tanhZB(Jom+ J & u + B )  

r =  $SJ[I -$I .  
We now use the identities (28) and (29) and perform a rotation in the space of the Gaussian 
integrals in (41) and (42) to arrive for the RS thermal equilibrium state of [1.7] at 

d 
-m = /Dx tanhB(J0m + J&x + 0)  - m = 0 
dr 

B J q  q -  Dxtanh',¶(Jom+J&x+B) = O  
d 
- r =  [ 1 
dr I 

The RS order-parameter equations in thermal equilibrium, as derived in [ 1, 71, thus indeed 
define fixed-points of our flow equations, as also follows from our more general analysis of 
section 2.4. 

If we insert the fixed-point relations into OUT expression (40) for the AT line, we obtain 

1 = B z J z  /Dx cosh-4 @(Jam + J&x + 8 )  
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Figure 4. Tmjectodes in the (m,  r )  plane obtained by performing sequential simulations of the 
SK model with N = 3000 and zero external field , for r < I O  itentiondspin (full curves), together 
with the velocities as predicted by the theory (mows, calculated at intervals of I iteratiodspin 
for the instantaneous m3c.croscopic state of the corresponding simulation, at the paint of the base 
of the mow). The first row of graphs corresponds to T = 1.5. the second to T = I .O, the third 
to T = 0.5 and the fourth to T = 0. Broken curves indicate the y = 1 curve (upper). the RS 
freezing line (middle) and the AT line (lower). 

which, again, corresponds exactly to the result obtained in thermal equilibrium [23]. This 
includes both the line segment separating paramagnetic from spin-glass phase, where 
(mq, res) = (0, f), and the line segment separating the replica-symmetric and replica- 
symmetry broken ferromagnetic phases. 

Our dynamical RS laws (41), (42) thus lead precisely to the thermal equilibrium described 
by Shemngton and Kirkpatrick [1,7] and de Almeida and Thouless [ 2 3 ] ,  including entropy 
and stability with respect to replica-symmetry breaking. 
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4. Further comparisons with numerical simulations 

In this section we present some more detailed simulation experiments, the outcome of which 
is compared to the predictions of our RS theory (the latter need not give sensible results 
above the AT line). The simulations can display two types of finite-size effects: thermal 
fluctuations in the flow of the order parameters (i.e. finite-size corrections to the Liouville 
equation (7)) and fluctuations in the local field distribution (i.e. finite-size corrections to the 
steepest descent integration leading to (7)). 

A C C Coolen and D Sherrington 

4.1. The local field distribution 

First we compare our analytical result (33) directly with the outcome of measuring the spin- 
glass contributions to the local alignment fields during actual numerical simulations. In 
order to probe the different regions of the (m. r )  plane we performed simulations from the 
initial state (m, r )  - (0.5,O) for J ,  = 0, JO = I and JO = 2 and measured the instantaneous 
distribution of the spin-glass contributions to the local alignment fields at different times. 
In figure 5 we show the resulting trajectories in the (m. r )  plane (full curves), together with 
the AT line (lower broken curve) and the q = 1 line (upper broken curve). Dots indicate the 
instances were the relevant measurements were done: t = 0, 1, 5 and 10 (unit: iterations per 
spin). In figures &S the distributions as measured from the full microstate u(f) (histograms) 
and calculated from (33) with only m(r) and r ( t )  as input (broken lines) are shown. The RS 
theory leading to the distribution (33) turns out to give a good qualitative description of the 
simulntion data; significant deviations are confined to the region above the AT line. Below 
the AT line these numerical results partially justify a posteriori the ansatze of self-averaging 
and subshell equipartitioning, made to close the set of deterministic dynamical laws for the 
order parameters m and r .  

4.2. Cooling in a small external peld 

Next we study the evolution in time of the order parameters m and r that results after 
cooling the system instantaneously from T = 00, the paramagnetic state (m,  r )  = (0,O). to 
T = 0.1. For simplicity we choose JO = 0 and J = 1. An external field 8 = 0.1 is applied 
in order to obtain non-trivial evolution for the magnetization (this field being small assures 
the macroscopic state vector eventually enters into the spin-glass region of the (m, r )  flow 
diagram, above the AT line). 

Figure 5. Tcajectories in the (m, r)  plane obtained from sequential 
simulations of the SK model with N = 3200, J = I and T = 0,l. 
for three different choices of Ju. Initial states: (m. r )  - (0.5,O). 

0 .2 .4 .6 .a 1 Dots indicae times at which the spin-glm contributions to the 
local fields are measured in order to test the theory. 

. 2 L , , , # , W j  
0 

m 
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Figure 6. Comparison between RS theory (broken 
curve) and the local Field disnibution as measured 
during the 4, = 0 simulation. 
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Figure 1. Comparison between RS theory (broken 
curves) and the local field distribution 3s measured 
during the Jo = I simulation. 

In figures 9 and 10 we compare the result of performing numerical simulations (for an 
N = 3200 system) with the result of solving numerically the RS flow equations (8) and 
(9). At least within the duration of the numerical experiments (t 6 10 iterationshpin), the 
direcrion of the flow in the (m,  r )  plane is correctly described by the RS flow equations, 
even above the AT line. Within the limitations of our simulations the RS theory, however, 
breaks down even before the AT line is crossed, in that the RS flow equations fail to describe 
an overall slowing down of the macroscopic flow. 

4.3. Decayfrom a fully magnetized state 

Finally we study the relaxation from the fully magnetized initial state (m,  r )  = ( I .  0) (ri la 
Kinzel [ 171, albeit for short time-scales t < 10 only). For simplicity we choose JO = 0 = 0 
and J = 1. Figures 11 and 12 show the result of comparing numerical simulations for an 
N = 3200 system with the result of solving numerically the RS flow equations (8) and (9). 
A ain within the duration of the numerical experiments ( t  < 10 iterationshpin) the direction 
of 7 the Row in the (m,  r )  plane is correctly described by the RS flow equations, whereas the 
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.EL ::w 0 -4 I -2 0 2 4 

I I I I t * * ' , I t b I ' 1 Figure S. Compdson between RS theory (broken curves) nnd 
the l o d  field distribution as measured during the 30 = 2 -4 -2 0 2 4 

2 simulation. 

0 .05 .1 .15 .2 
7n 

Figure 9. Flow in the (m. r )  plane of the order panmeten m(r) and 
r ( i ) ,  at T = 0.1 with a small extemal field El = 0.1. Initial state: 
(m,  r )  = (0,O) (the pmagnet ic  state). Fluctuating curves: three 
independent N = 3200 simulations. Smooth full curve: salution of 
RS Row equations. Broken cwa: the y = I line (Upper) and lhe AT 
line (lower). 

RS theory apparently fails to describe the overall slowing down that sets in even before the 
AT line is crossed (which gives rise to the familiar remanent magnetization [17]). In order 
to describe the slow relaxation of this remanent magnetization above the AT line, measured 
rather in terms of a few thousand iterations per spin, we clearly need the RSB version of 
our theory. 
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Figure 10. Evolution in time of the order 
parameten m(t)  (left picture) and r ( f )  (right 
picture), at T = 0.1 with a small  extemal field 
8 = 0.1. Initial state: (m. r)  = (0.0) (the 
paramagnetic state). Fluctuating lines: Wee 
independent N = 3200 simulations. Smooth 
line: solution of RS flow equations below AT line. 
Broken line: Solution of RS flow equations about 
AT line. 

0 .2 .4 .6 .E 1 
m 

Figure 11. Flow in the ( m , r )  plane of the order parameters m(r) 
and r ( r ) ,  at T = 0.0 with 4) = 8 = 0 and J = 1 from the fully 
magnetized initial state ( m , r )  = (1.0). Fluctuating curves: three 
independent N = 3200 simulations. Thick full CUNe: solution of 
RS flow equations. Broken curve: they = 1 line (upper) and the AT 
line (lower). 

0 2 4 8 8 1 0  0 2 4 6 8 1 0  
t 2 

Figure 12. Evolution in time of the order 
parameters m(r) (left picture) and r ( r )  (right 
picture). at T = 0.0 with 41 = 8 = 0 and 
J = I. Fluctuating curves: three independent 
N = 3200 simulations. Smooth CUNC solution 
of RS Row equations below the AT line. Broken 
Curve: solution of RS flaw equations d o v e  the 
AT line. 

5. Discussion 

In this paper we have developed a dynamical theory, valid on finite time-scales, to describe 
the Glauber dynamics of the SK model in terms of deterministic Row equations for two 
macroscopic state variables: the magnetization and the spin-glass contribution to the energy. 
Two transparant physical assumptions, based on a systematic removal of microscopic 
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memory effects, allow us to calculate the time-dependent distribution of local aligment 
fields in terms of the instantaneous order parameters only and thereby obtain a closed set 
of flow equations for our two order parameters. The theory produces, in a natural way, 
dynamical generalizations of the AT- and zero-entropy lines and of Parisi's order-parameter 
function P(q) .  In equilibrium we recover the standard results from equilibrium statistical 
mechanics, including the full RSB equations, 

In calculating the order-parameter flow explicitly we have made the replica-symmetric 
(RS) ansatz, as a natural first step. A subsequent paper will be devoted to the implications 
of breaking the replica symmetry (RSB). We found that i n  most of the flow diagram replica 
symmetry is stable. Numerical simulations suggest that our equations describe the shape 
of the local field distribution and the macroscopic dynamics quite well in the region where 
replica symmetry is stable. In the region of the flow diagram where the RS solution is 
unstable the flow direction as given by the RS theory still seems correct and analysis of 
the flow equations shows that the RS theory even predicts non-exponential relaxation in the 
limit T -+ 0. However, the RS theory fails to describe a rigorous slowing down which, 
according to simulations, sets in near the de Almeida-Thouless [23] line. Intuitively one 
expects the breaking up of phase space, as indicated by the breaking of replica symmetry, 
to have a slowing down effect on the macroscopic flow. Preliminary investigations of the 
effect of replica-symmetry breaking, based on expansions just above the AT line and on a 
one-step symmetry breaking d la Parisi, show that this is indeed the case [27]. 

We consider the main appeal of our formalism to be its transparency. The theory 
is formulated in terms of two directly observable macroscopic state variables: the 
magnetization and the spin-glass contribution to the energy per spin. Furthermore the 
macroscopic laws are derived directly from the underlying microscopic stochastic equations, 
given two key assumptions. An interesting difference with existing (mostly Langevin) 
approaches is that in the present formalism replica theory enters naturally as a mathematical 
tool in calculating the time-dependent distribution of local alignment fields. One of the two 
assumptions on which our analysis is based (self-averaging of the macroscopic laws with 
respect to the frozen disorder) is quite standard. Both assumptions are supported by evidence 
from numerical simulations. Based on the agreement between theory and simulations in the 
RS region we believe that our two closure assumptions lead to a theory which captures the 
main physics of the order-parameter flow of the SK model on finite time-scales, and that the 
impact of microscopic memory effects (which in the theory are explicitely removed) can 
be viewed, as in [21,22], principally as an overall slowing down. Our next step will be to 
investigate in detail the RSB version of our dynamical laws, which will be the subject of a 
subsequent paper. 

A C C Coolen and D Sherrington 
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